Mycoplasma

Mycoplasmas are cell wall-less bacterium with small genome sizes, typically 0.6-1.4 Mb. All mycoplasma species are obligate parasites with specific hosts. Their small genomes are thought to be the result of reductive evolution from an ancestor on a bacterial phylogenetic branch with a low guanine and cytosine content (i.e., a member of the Firmicutes, such as Clostridium spp. and Bacillus spp.) adapting to obligate parasitic life. In this chapter, the features of mycoplasma/ureaplasma/ phytoplasma genomes are discussed in terms of reductive evolution, a gene set for essential functions, and paralog formation under evolutionary pressure for gene reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 93.08 Price includes VAT (France)

Softcover Book EUR 116.04 Price includes VAT (France)

Hardcover Book EUR 158.24 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Similar content being viewed by others

Identification of mycobacteriophage toxic genes reveals new features of mycobacterial physiology and morphology

Article Open access 04 September 2020

Genome Plasticity in Obligate Parasitic Phytoplasmas

Chapter © 2014

The Family Entomoplasmataceae

Chapter © 2014

References

  1. Johansson, K. E. and Petersson, B. (2002) Taxonomy of Mollicutes, in Molecular Biology and Pathogenicity of Mycoplasma (Razin, S. and Herrmann, R., eds.). Kluwer Academic/ Plenum Publishers, New York, NY, pp. 1–29. ChapterGoogle Scholar
  2. Harasawa, R., Lefkowitz, E., Glass, J., and Cassell, G. (1996) Phylogenetic analysis of the 16S-23S rRNA intergenic spacer regions of the genus Ureaplasma. J. Vet. Med. Sci.58, 191–195. PubMedCASGoogle Scholar
  3. Caudwell, A. (1984) Mycoplasma-like organisms (MLO), pathogens of the plant yellow diseases, as a model of coevolution between prokaryotes, insects and plants. Isr. J. Med. Sci.20, 1025–1027. PubMedCASGoogle Scholar
  4. Kirchhoff, H., Schmidt, R., Lehmann, H., Clark, H. W., and Hill, A. C. (1996) Mycoplasma elephantis sp. nov., a new species from elephants. J. Syst. Bacteriol.46, 437–441. Google Scholar
  5. Kirchhoff, H., Mohan, K., Schmidt, R., et al. (1997) Mycoplasma crocodyli sp. nov., a new species from crocodiles. Int. J. Syst. Bacteriol.47, 742–746. PubMedCASGoogle Scholar
  6. Kobayashi, H., Runge, M., Schmidt, R., Kubo, M., Yamamoto, K., and Kirchhoff, H. (1997) Mycoplasma lagogenitalium sp. nov., from the preputial smegma of Afghan pikas (Ochotona rufescens rufescens). Int. J. Syst. Bacteriol.47, 1208–1211. PubMedCASGoogle Scholar
  7. Hammond, E., Miller, C., Sneed, L., and Radcliffe, R. (2003) Mycoplasma-associated polyarthritis in a reticulated giraffe. J. Wildl. Dis.39, 233–237. PubMedGoogle Scholar
  8. Messick, J. B., Walker, P. G., Raphael, W., Berent, L., and Shi, X. (2002) ‘Candidatus Mycoplasma haemodidelphidis’ sp. nov., Candidatus Mycoplasma haemolamae’ sp. nov. and Mycoplasma haemocanis comb. nov., haemotrophic parasites from a naturally infected opossum (Didelphis virginiana), alpaca (Lama pacos) and dog (Canis familiaris): phylogenetic and secondary structural relatedness of their 16S rRNA genes to other mycoplasmas. Int. J. Syst. Evol. Microbiol.52, 693–698. ArticlePubMedCASGoogle Scholar
  9. Modoff, S. (1980) Abstract of the 3rd International Conference of International Organization for Mycoplasmology, Custer, USA, p. 20. Google Scholar
  10. Panangala, V., Stringfellow, J., Dybvig, K., et al. (1993) Mycoplasma corogypsi sp. nov., a new species from the footpad abscess of a black vulture, Coragyps atratus. Int. J. Syst. Bacteriol.43, 585–590. PubMedCASGoogle Scholar
  11. Blanchard, A. and Bébéar, C. (2002) Mycoplasma of humans, in Molecular Biology and Pathogenicity of Mycoplasmas (Rasin, S. and Herrmann, R., eds.). Kluwer Academic/ Plenum Publishers, New York. Google Scholar
  12. Koletsky, R. J. and Weinstein, A. J. (1980) Fulminant Mycoplasma pneumoniae infection. Report of fatal case, and a review of the literature. Am. Rev. Respir. Dis.122, 491–497. PubMedCASGoogle Scholar
  13. Takiguchi, Y., Shika, T., and Hirai, A. (2001) Fulminant Mycoplasma pneumoniae pneumonia. Intern. Med.40, 345–349. PubMedCASGoogle Scholar
  14. Lo, S. C., Hayes, M. M., Wang, R. Y., Pierce, P. F., Kotani, H., and Shih, J. W. (1991) Newly discovered mycoplasma isolated from patients infected with HIV. Lancet338, 1415–1418. ArticlePubMedCASGoogle Scholar
  15. Lo, S. C., Hayes, M. M., Tully, J. G., et al. (1992) Mycoplasma penetrans sp. nov., from the urogenital tract of patients with AIDS. Int. J. Syst. Bacteriol.42, 357–364. ArticlePubMedCASGoogle Scholar
  16. Lo, S. C. (1992) Mycoplasmas and AIDS, in Mycoplasmas, Molecular Biology and Pathogenesis (Maniloff, J., McElhaney, R. N., Finch, L. R., and Baseman, J. B., eds.). American Society for Microbiology, Washington, DC, pp. 523–545. Google Scholar
  17. Hussain, A. I., Robson, W. L., Kelley, R., Reid, T., and Gangemi, J. D. (1999) Mycoplasma penetrans and other mycoplasmas in urine of human immunodeficiency virus-positive children. J. Clin. Microbiol.37, 1518–1523. PubMedCASGoogle Scholar
  18. Grau, O., Slizewicz, B., Tuppin, P., et al. (1995) Association of Mycoplasma penetrans with HIV infection. J. Infect.172, 672–681. CASGoogle Scholar
  19. Wang, R. Y., Shih, J. W., Grandinetti, T., et al. (1992) High frequency of antibodies to Mycoplasma penetrans in HIV-infected patients. Lancet340, 1312–1316. ArticlePubMedCASGoogle Scholar
  20. Grau, O., Tuppin, P., Slizewicz, B., et al. (1998) A longitudinal study of seroreactivity against Mycoplasma penetrans in HIV-infected homosexual men: association with disease progression. AIDS Res. Hum. Retroviruses14, 661–667. ArticlePubMedCASGoogle Scholar
  21. Sasaki, Y., Honda, M., Makino, M., and Sasaki, T. (1993) Mycoplasmas stimulate replication of human immunodeficiency virus type 1 through selective activation of CD4+ T lymphocytes. AIDS Res. Hum. Retroviruses9, 775–780. PubMedCASGoogle Scholar
  22. Sasaki, Y., Blanchard, A., Watson, H. L., et al. (1995) In vitro influence of Mycoplasma penetrans on activation of peripheral T lymphocytes from healthy donors or human immunodeficiency virus-infected individuals. Infect. Immun.63, 4277–4283. PubMedCASGoogle Scholar
  23. Yáñez, A., Cedillo, L., Neyrolles, O., et al. (1999) Mycoplasma penetrans bacteremia and primary antiphospholipid syndrome. Emerg. Infect. Dis.5, 164–167. ArticlePubMedGoogle Scholar
  24. Sasaki, Y., Ishikawa, J., Yamashita, A., et al. (2002) The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res.30, 5293–5300. ArticlePubMedCASGoogle Scholar
  25. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y., and Ishikawa, H. (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp.APS. Nature407, 81–86. ArticlePubMedCASGoogle Scholar
  26. Cavalier-Smith, T. (2002) Nucleomorphs: enslaved algal nuclei. Curr. Opin. Microbiol.5, 612–619. ArticlePubMedCASGoogle Scholar
  27. Cavalier-Smith, T. (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos. Trans. R. Soc. Lond. B. Biol. Sci.358, 109–133. ArticlePubMedCASGoogle Scholar
  28. Hoef-Emden, K., Marin, B., and Melkonian, M. (2002) Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J. Mol. Evol.55, 161–179. ArticlePubMedCASGoogle Scholar
  29. Maniloff, J. (1992) Phylogeny of Mycoplasmas, in Mycoplasmas, Molecular Biology and Pathogenesis (Maniloff, J., McElhaney, R. N., Finch, L. R., and Baseman, J. B., eds.). American Society for Microbiology, Washington, DC, pp. 549–559. Google Scholar
  30. Maniloff, J. (2002) Phylogeny and evolution, in Molecular Biology and Pathogenicity of Mycoplasmas (Rasin, S. and Herrmann, R. eds.). Kluwer Academic/Plenum Publishers, New York. Google Scholar
  31. Maniloff, J. (1996) The minimal cell genome: “on being the right size.” Proc. Natl. Acad. Sci. USA93, 10,004–10,006. ArticlePubMedCASGoogle Scholar
  32. Hutchison, C. A., Peterson, S. N., Gill, S. R., et al. (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science286, 2089–2090. ArticleGoogle Scholar
  33. Koonin, E. V. (2000) How many genes can make a cell: the minimal-gene-set concept. Annu. Rev. Genomics Hum. Genet.1, 99–116. ArticlePubMedCASGoogle Scholar
  34. Mushegian, A. R. and Koonin, E. V. (1996) A minimal gene set for a cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. USA93, 10,268–10,273. ArticlePubMedCASGoogle Scholar
  35. Chambaud, I., Heilig, R., Ferris, S., et al. (2001) The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis. Nucleic Acids Res.29, 2145–2153. ArticlePubMedCASGoogle Scholar
  36. Glass, J. I., Lefkowitz, E. J., Glass, J. S., Heiner, C. R., Chen, E. Y., and Cassell, G. H. (2000) The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature407, 757–762. ArticlePubMedCASGoogle Scholar
  37. Oshima, K., Kakizawa, S., Nishigawa, H., et al. (2003) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet.36, 27–29. ArticlePubMedCASGoogle Scholar
  38. Papazisi, L., Gorton, T. S., Kutish, G., et al. (2003) The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain Rlow. Microbiology 149, 2307–2316. Google Scholar
  39. Westberg, J., Persson, A., Holmberg, A., et al. (2004) The genome sequence of Mycoplasma mycoides subsp. mycoides SC type strain PG1, the causative agent of contagious bovine pleuropneumoniae (CBPP). Genome Res.14, 221–227. ArticlePubMedCASGoogle Scholar
  40. Himmelreich, R., Hilbert, H., Plagens, H., Pirkl, E., Li, B. C., and Herrmann, R. (1996) Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res.24, 4420–4449. ArticlePubMedCASGoogle Scholar
  41. Kobayashi, K., Ehrlich, S. D., Albertini, A., et al. (2003) Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA100, 4678–4683. ArticlePubMedCASGoogle Scholar
  42. Kunisawa, T. (2003) Gene arrangements and branching orders of gram-positive bacteria. J. Theor. Biol.222, 495–503. PubMedCASGoogle Scholar
  43. Koonin, E. V., Mushegian, A. R., and Bork, P. (1996) Non-orthologous displacement. Trends. Genet.12, 334–336. ArticlePubMedCASGoogle Scholar
  44. Jaffe, J. D., Stange-Thomann, N., Smith, C., et al. (2004) The complete genome and proteome of Mycoplasma mobile. Genome Res.14, 1447–1461. ArticlePubMedCASGoogle Scholar
  45. Neyrolles, O., Chambaud, I., Ferris, S., et al. (1999) Phase variations of the Mycoplasma penetrans main surface lipoprotein increase antigenic diversity. Infect. Immun.67, 1569–1578. PubMedCASGoogle Scholar
  46. Röske, K., Blanchard, A., Chambaud, I., et al. (2001) Phase variation among major surface antigens of Mycoplasma penetrans. Infect. Immun.69, 7642–7651. ArticlePubMedGoogle Scholar
  47. Horino, A., Sasaki, Y., Sasaki, T., and Kenri, T. (2003) Multiple promoter inversions generate surface antigenic variation in Mycoplasma penetrans. J. Bacteriol.185, 231–242. ArticlePubMedCASGoogle Scholar
  48. Neyrolles, O., Eliane, J. P., Ferris, S., et al. (1999) Antigenic characterization and cytolocalization of P35, the major Mycoplasma penetrans antigen. Microbiology145, 343–355. PubMedCASGoogle Scholar
  49. Glew, M. D., Browning, G. F., Markham, P. F., and Walker, I. D. (2000) pMGA phenotypic variation in Mycoplasma gallisepticum occurs in vivo and is mediated by trinucleotide repeat length variation. Infect. Immun.68, 6027–6033. ArticlePubMedCASGoogle Scholar
  50. Liu, L., Panangala, V. S., and Dybvig, K. (2002) Trinucleotide GAA repeats dictate pMGA gene expression in Mycoplasma gallisepticum by affecting spacing between flanking regions. J. Bacteriol.184, 1335–1339. PubMedCASGoogle Scholar
  51. Winner, F., Markova, I., Much, P., et al. (2003) Phenotypic switching in Mycoplasma gallisepticum hemadsorption is governed by a high-frequency, reversible point mutation. Infect. Immun.71, 1265–1273. ArticlePubMedCASGoogle Scholar
  52. Liu, T., Garcia, M., Levisohn, S., Yogev, D., and Kleven, S. H. (2001) Molecular variability of the adhesin-encoding gene pvpA among Mycoplasma gallisepticum strains and its application in diagnosis. J. Clin. Microbiol.39, 1882–1888. ArticlePubMedCASGoogle Scholar
  53. Sasaki, T., Kenri, T., Okazaki, N., et al. (1996) Epidemiological study of Mycoplasma pneumoniae infections in japan based on PCR-restriction fragment length polymorphism of the P1 cytadhesin gene. J. Clin. Microbiol.34, 447–449. PubMedCASGoogle Scholar
  54. Kenri, T., Taniguchi, R., Sasaki, Y., et al. (1999) Identification of a new variable sequence in the P1 cytadhesin gene of Mycoplasma pneumoniae: evidence for the generation of antigenic variation by DNA recombination between repetitive sequences. Infect. Immun.67, 4557–4562. PubMedCASGoogle Scholar
  55. Dorigo-Zetsma, J. W., Wilbrink, B., Dankert, J., and Zaat, S. A. J. (2001) Mycoplasma pneumoniae P1 type 1-and type 2-specific sequences within the P1 cytadhesin gene of individual strains. Infect. Immun.69, 5612–5618. ArticlePubMedCASGoogle Scholar
  56. Himmelreich, R., Plagens, H., Hilbert, H., Reiner, B., and Herrmann, R. (1997) Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium. Nucleic Acids Res.25, 701–712. ArticlePubMedCASGoogle Scholar
  57. Peterson, S., Bailey, C., Jensen, J., et al. (1995) Characterization of repetitive DNA in the Mycoplasma genitalium genome: possible role in the generation of antigenic variation. Proc. Natl. Acad. Sci. USA92, 11,829–11,833. ArticlePubMedCASGoogle Scholar
  58. Fraser, C. M., Gocayne, J. D., White, O., et al. (1995) The minimal gene complement of Mycoplasma genitalium. Science270, 397–403. ArticlePubMedCASGoogle Scholar
  59. Rocha, E. P. C. and Blanchard, A. (2002) Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res.30, 2031–2042. ArticlePubMedCASGoogle Scholar
  60. Kuboyama, T., Huang, C. C., Lu, X., et al. (1998) A plasmid isolated from phytopathogenic onion yellows phytoplasma and its heterogeneity in the pathogenic phytoplasma mutant. Mol. Plant Microbe Interact.11, 1031–1037. ArticlePubMedCASGoogle Scholar
  61. Oshima, K., Kakizawa, S., Nishigawa, H., et al. (2001) A plasmid of phytoplasma encodes a unique replication protein having both plasmid-and virus-like domains, clue to viral ancestry or result of virus/plasmid recombination? Virology285, 270–277. ArticlePubMedCASGoogle Scholar
  62. Nishiguchi, M., Matsumoto, M., Takao, T., et al. (2001) Mycoplasma fermentans lipoprotein M161Ag-induced cell activation is mediated by Toll-like receptor 2: role of N-terminal hydrophobic portion in its multiple functions. J. Immunol.166, 2610–2616. PubMedCASGoogle Scholar
  63. Takeuchi, O., Kaufmann, A., Grote, K., et al. (2000) Cutting edge: preferentially the Rstereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2-and MyD88-dependent signaling pathway. J. Immunol.164, 554–557. PubMedCASGoogle Scholar
  64. Muhlradt, P. F., Kiess, M., Meyer, H., Sussmuth, R., and Jung, G. (1997) Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from Mycoplasma fermentans acting at picomolar concentration. J. Exp. Med.185, 1951–1958. ArticlePubMedCASGoogle Scholar
  65. Okusawa, T., Fujita, M., Nakamura, J., et al. (2004) Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by tolllike receptors 2 and 6. Infect. Immun.72, 1657–1665. ArticlePubMedCASGoogle Scholar
  66. Shibata, K., Hasebe, A., Into, T., Yamada, M., and Watanabe, T. (2000) The N-terminal lipopeptide of a 44-kDa membrane-bound lipoprotein of Mycoplasma salivarium is responsible for the expression of intercellular adhesion molecule-1 on the cell surface of normal human gingival fibroblasts. J. Immunol.165, 6538–6544. PubMedCASGoogle Scholar
  67. Link, C., Gavioli, R., Ebensen, T., Canella, A., Reinhard, E., and Guzman, C. (2004) The Toll-like receptor ligand MALP-2 stimulates dendritic cell maturation and modulates proteasome composition and activity. Eur. J. Immunol.34, 899–907. ArticlePubMedCASGoogle Scholar
  68. Weigt, H., Muhlradt, P. F., Emmendorffer, A., Krug, N., and Braun, A. (2003) Synthetic mycoplasma-derived lipopeptide MALP-2 induces maturation and function of dendritic cells. Immunobiology207, 223–233. ArticlePubMedCASGoogle Scholar
  69. Into, T., Kiura, K., Yasuda, M., et al. (2004) Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. Cell Microbiol.6, 187–199. ArticlePubMedCASGoogle Scholar
  70. Jacobs, E., Bartl, A., Oberle, K., and Schiltz, E. (1995) Molecular mimicry by Mycoplasma pneumoniae to evade the induction of adherence inhibiting antibodies. J. Med. Microbiol.43, 422–429. PubMedCASGoogle Scholar

References Added in Proof

  1. Glass, J., Assad-Garcia, N., Alperovich, N., et al. (2006) Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. USA13, 425–430. ArticleCASGoogle Scholar
  2. Pitcher, D. G., Windsor, D., Windsor, H., et al. (2005) Mycoplasma amphoriforme sp. nov., isolated from a patient with chronic bronchopneumonia. Int. J. Syst. Evol. Microbiol.55, 2589–2594. ArticlePubMedCASGoogle Scholar
  3. Shimizu, T., Kida, Y., and Kuwano, K. (2004) Lipid-associated membrane proteins of Mycoplasma fermentans and M. penetrans activate human immunodeficiency virus long-terminal repeats through Toll-like receptors. J. Immunol.113, 121–129. ArticleCASGoogle Scholar

Author information

Authors and Affiliations

  1. Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan Yuko Sasaki
  1. Yuko Sasaki
You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada Voon L. Chan PhD
  2. Department of Paediatrics Department of Laboratory Medicine and Pathobiology Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada Philip M. Sherman MD, FRCPC
  3. Children’s Research Center, Our Lady’s Hospital for Sick Children, School of Medicine and Medical Science, Dublin, Ireland Billy Bourke MD, FRCPI
  4. Conway Institute for Biomolecular and Biomedical Research, University College, Dublin, Ireland Billy Bourke MD, FRCPI

Rights and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sasaki, Y. (2006). Mycoplasma. In: Chan, V.L., Sherman, P.M., Bourke, B. (eds) Bacterial Genomes and Infectious Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-152-9_10

Download citation

Share this chapter

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative